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Abstract

Hypergraph clustering refers to the process of extracting maximally coherent
groups from a set of objects using high-order (rather than pairwise) similarities.
Traditional approaches to this problem are based on the ideaof partitioning the
input data into a user-defined number of classes, thereby obtaining the clusters as
a by-product of the partitioning process. In this paper, we provide a radically dif-
ferent perspective to the problem. In contrast to the classical approach, we attempt
to provide a meaningful formalization of the very notion of acluster and we show
that game theory offers an attractive and unexplored perspective that serves well
our purpose. Specifically, we show that the hypergraph clustering problem can
be naturally cast into a non-cooperative multi-player “clustering game”, whereby
the notion of a cluster is equivalent to a classical game-theoretic equilibrium con-
cept. From the computational viewpoint, we show that the problem of finding the
equilibria of our clustering game is equivalent to locally optimizing a polynomial
function over the standard simplex, and we provide a discrete-time dynamics to
perform this optimization. Experiments are presented which show the superiority
of our approach over state-of-the-art hypergraph clustering techniques.

1 Introduction

Clustering is the problem of organizing a set of objects intogroups, orclusters, in a way as to have
similar objects grouped together and dissimilar ones assigned to different groups, according to some
similarity measure. Unfortunately, there is no universally accepted formal definition of the notion
of a cluster, but it is generally agreed that, informally, a cluster should correspond to a set of objects
satisfying two conditions: aninternal coherencycondition, which asks that the objects belonging to
the cluster have high mutual similarities, and anexternal incoherencycondition, which states that
the overall cluster internal coherency decreases by addingto it any external object.

Objects similarities are typically expressed as pairwise relations, but in some applications higher-
order relations are more appropriate, and approximating them in terms of pairwise interactions can
lead to substantial loss of information. Consider for instance the problem of clustering a given set of
d-dimensional Euclidean points into lines. As every pair of data points trivially defines a line, there
does not exist a meaningful pairwise measure of similarity for this problem. However, it makes
perfect sense to define similarity measures over triplets ofpoints that indicate how close they are
to being collinear. Clearly, this example can be generalized to any problem of model-based point
pattern clustering, where the deviation of a set of points from the model provides a measure of their
dissimilarity. The problem of clustering objects using high-order similarities is usually referred to
as thehypergraph clustering problem.

In the machine learning community, there has been increasing interest around this problem. Zien
and co-authors [24] propose two approaches called “clique expansion” and “star expansion”, respec-
tively. Both approaches transform the similarity hypergraph into an edge-weighted graph, whose
edge-weights are a function of the hypergraph’s original weights. This way they are able to tackle
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the problem with standard pairwise clustering algorithms.Bolla [6] defines a Laplacian matrix for
an unweighted hypergraph and establishes a link between thespectral properties of this matrix and
the hypergraph’s minimum cut. Rodrı̀guez [16] achieves similar results by transforming the hyper-
graph into a graph according to “clique expansion” and showsa relationship between the spectral
properties of a Laplacian of the resulting matrix and the cost of minimum partitions of the hy-
pergraph. Zhou and co-authors [23] generalize their earlier work on regularization on graphs and
define a hypergraph normalized cut criterion for ak-partition of the vertices, which can be achieved
by finding the second smallest eigenvector of a normalized Laplacian. This approach generalizes
the well-known “Normalized cut” pairwise clustering algorithm [19]. Finally, in [2] we find another
work based on the idea of applying a spectral graph partitioning algorithm on an edge-weighted
graph, which approximates the original (edge-weighted) hypergraph. It is worth noting that the ap-
proaches mentioned above are devised for dealing with higher-order relations, but can all be reduced
to standard pairwise clustering approaches [1]. A different formulation is introduced in [18], where
the clustering problem with higher-order (super-symmetric) similarities is cast into a nonnegative
factorization of the closest hyper-stochastic version of the input affinity tensor.

All the afore-mentioned approaches to hypergraph clustering are partition-based. Indeed, clusters
are not modeled and sought directly, but they are obtained asa by-product of the partition of the input
data into a fixed number of classes. This renders these approaches vulnerable to applications where
the number of classes is not known in advance, or where data isaffected by clutter elements which
do not belong to any cluster (as in figure/ground separation problems). Additionally, by partitioning,
clusters are necessarily disjoint sets, although it is in many cases natural to have overlapping clusters,
e.g., two intersecting lines have the point in the intersection belonging to both lines.

In this paper, following [14, 20] we offer a radically different perspective to the hypergraph cluster-
ing problem. Instead of insisting on the idea of determininga partition of the input data, and hence
obtaining the clusters as a by-product of the partitioning process, we reverse the terms of the prob-
lem and attempt instead to derive a rigorous formulation of the very notion of a cluster. This allows
one, in principle, to deal with more general problems where clusters may overlap and/or outliers
may get unassigned. We found that game theory offers a very elegant and general mathematical
framework that serves well our purposes. The basic idea behind our approach is that the hypergraph
clustering problem can be considered as a multi-player non-cooperative “clustering game”. Within
this context, the notion of a cluster turns out to be equivalent to a classical equilibrium concept from
(evolutionary) game theory, as the latter reflects both the internal and external cluster conditions
alluded to before. We also show that there exists a correspondence between these equilibria and
the local solutions of a polynomial, linearly-constrained, optimization problem, and provide an al-
gorithm for finding them. Experiments on two standard hypergraph clustering problems show the
superiority of the proposed approach over state-of-the-art hypergraph clustering techniques.

2 Basic notions from evolutionary game theory

Evolutionary game theory studies models of strategic interactions (calledgames) among large
numbers of anonymous agents. A game can be formalized as a triplet Γ = (P, S, π), where
P = {1, . . . , k} is the set of players involved in the game,S = {1, . . . , n} is the set ofpure
strategies(in the terminology of game-theory) available to each player andπ : Sk → R is thepayoff
function, which assigns a payoff to eachstrategy profile, i.e., the (ordered) set of pure strategies
played by the individuals. The payoff functionπ is assumed to be invariant to permutations of the
strategy profile. It is worth noting that in general games, each player may have its own set of strate-
gies and own payoff function. For a comprehensive introduction to evolutionary game theory we
refer to [22].

By undertaking an evolutionary setting we assume to have a large population of non-rational agents,
which are randomly matched to play a gameΓ = (P, S, π). Agents are considered non-rational, be-
cause each of them initially chooses a strategy fromS, which will be always played when selected
for the game. An agent, who selected strategyi ∈ S, is calledi-strategist. Evolution in the popula-
tion takes place, because we assume that there exists a selection mechanism, which, by analogy with
a Darwinian process, spreads the fittest strategies in the population to the detriment of the weakest
one, which will in turn be driven to extinction. We will see later in this work a formalization of such
a selection mechanism.
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The state of the population at a given timet can be represented as an-dimensional vectorx(t),
wherexi(t) represents the fraction ofi-strategists in the population at timet. The set of all possible
states describing a population is given by

∆ =

{

x ∈ R
n :

∑

i∈S

xi = 1 andxi ≥ 0 for all i ∈ S

}

,

which is calledstandard simplex. In the sequel we will drop the time reference from the population
state, where not necessary. Moreover, we denote withσ(x) the supportof x ∈ ∆, i.e., the set of
strategies still alive in populationx ∈ ∆: σ(x) = {i ∈ S : xi > 0}.

If y
(i) ∈ ∆ is the probability distribution identifying which strategy the ith player will adopt if

drawn to play the gameΓ, then the average payoff obtained by the agents can be computed as

u(y(1), . . . ,y(k)) =
∑

(s1,...,sk)∈Sk

π(s1, . . . , sk)

k
∏

j=1

y(j)
sj

. (1)

Note that (1) is invariant to any permutation of the input probability vectors.

Assuming that the agents are randomly and independently drawn from a populationx ∈ ∆ to play
the gameΓ, the population average payoff is given byu(xk), wherexk is a shortcut forx, . . . ,x
repeatedk times. Furthermore, the average payoff that ani-strategist obtains in a populationx ∈ ∆
is given byu(ei,xk−1), whereei ∈ ∆ is a vector withxi = 1 and zero elsewhere.

An important notion in game theory is that of equilibrium [22]. A populationx ∈ ∆ is in equilibrium
when the distribution of strategies will not change anymore, which intuitively happens when every
individual in the population obtains the same average payoff and no strategy can thus prevail on the
other ones. Formally,x ∈ ∆ is aNash equilibriumif

u(ei,xk−1) ≤ u(xk) , for all i ∈ S . (2)
In other words, every agent in the population performs at most as well as the population average
payoff. Due to the multi-linearity ofu, a consequence of (2) is that

u(ei,xk−1) = u(xk) , for all i ∈ σ(x) , (3)
i.e., all the agents that survived the evolution obtain the same average payoff, which coincides with
the population average payoff.

A key concept pertaining to evolutionary game theory is thatof an evolutionary stable strategy
[7, 22]. Such a strategy is robust to evolutionary pressure in an exact sense. Assume that in a
populationx ∈ ∆, a small shareǫ of mutant agents appears, whose distribution of strategiesis
y ∈ ∆. The resulting postentry population is given bywǫ = (1 − ǫ)x + ǫy. Biological intuition
suggests that evolutionary forces select against mutant individuals if and only if the average payoff
of a mutant agent in the postentry population is lower than that of an individual from the original
population, i.e.,

u(y,wk−1
ǫ ) < u(x,wk−1

ǫ ) . (4)
A populationx ∈ ∆ is evolutionary stable(or an ESS) if inequality (4) holds for any distribution of
mutant agentsy ∈ ∆\ {x}, granted the population share of mutantsǫ is sufficiently small (see, [22]
for pairwise contests and [7] forn-wise contests).

An alternative, but equivalent, characterization of ESSs involves a leveled notion of evolutionary
stable strategies [7]. We say thatx ∈ ∆ is anESS of levelj againsty ∈ ∆, if there existsj ∈
{0, . . . , k − 1} such that both conditions

u(yj+1,xk−j−1) < u(yj ,xk−j) , (5)

u(yi+1,xk−i−1) = u(yi,xk−i) , for all 0 ≤ i < j , (6)

are satisfied. Clearly,x ∈ ∆ is an ESS if it satisfies a condition of this form for everyy ∈ ∆ \ {x}.
It is straightforward to see that any ESS is a Nash equilibrium [22, 7]. An ESS, which satisfies
conditions (6) withj never more thanJ , will be called anESS of levelJ . Note that for the generic
case most of the preceding conditions will be superfluous, i.e., only ESSs of level 0 or 1 are required
[7]. Hence, in the sequel, we will consider only ESSs of level1. It is not difficult to verify that any
ESS (of level 1)x ∈ ∆ satisfies

u(wk
ǫ ) < u(xk) , (7)

for all y ∈ ∆ \ {x} and small enough values ofǫ.
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3 The hypergraph clustering game
The hypergraph clustering problem can be described by an edge-weighted hypergraph. Formally,
an edge-weightedhypergraphis a tripletH = (V, E, s), whereV = {1, . . . , n} is a finite set
of vertices, E ⊆ P(V ) \ {∅} is the set of (hyper-)edges (here,P(V ) is the power set ofV ) and
s : E → R is a weight function which associates a real value with each edge. Note that negative
weights are allowed too. Although hypergraphs may have edges of varying cardinality, we will focus
on a particular class of hypergraphs, calledk-graphs, whose edges have all fixed cardinalityk ≥ 2.

In this paper, we cast the hypergraph clustering problem into a game, called(hypergraph) clustering
game, which will be played in an evolutionary setting. Clusters are then derived from the analy-
sis of the ESSs of the clustering game. Specifically, given ak-graphH = (V, E, s) modeling a
hypergraph clustering problem, whereV = {1, . . . , n} is the set of objects to cluster ands is the
similarity function over the set of objects inE, we can build a game involvingk players, each of
them having the same set of (pure) strategies, namely the setof objects to clusterV . Under this
setting, a populationx ∈ ∆ of agents playing a clustering game represents in fact a cluster, where
xi is the probability for objecti to be part of it. Indeed, any cluster can be modeled as a probability
distribution over the set of objects to cluster. The payoff function of the clustering game is defined
in a way as to favour the evolution of agents supporting highly coherent objects. Intuitively, this
is accomplished by rewarding thek players in proportion to the similarity that thek played objects
have. Hence, assuming(v1, . . . , vk) ∈ V k to be the tuple of objects selected byk players, the payoff
function can be simply defined as

π(v1, . . . , vk) =

{

1
k!s ({v1, . . . , vk}) if {v1, . . . , vk} ∈ E ,

0 else,
(8)

where the term1/k! has been introduced for technical reasons.

Given a populationx ∈ ∆ playing the clustering game, we have that the average population payoff
u(xk) measures the cluster’s internal coherency as the average similarity of the objects forming the
cluster, whereas the average payoffu(ei,xk−1) of an agent supporting objecti ∈ V in population
x, measures the average similarity of objecti with respect to the cluster.

An ESS of a clustering game incorporates the properties of internal coherency and external inco-
herency of a cluster:

internal coherency: since ESSs are Nash equilibria, from (3), it follows that every object contribut-
ing to the cluster, i.e., every object inσ(x), has the same average similarity with respect to
the cluster, which in turn corresponds to the cluster’s overall average similarity. Hence, the
cluster is internally coherent;

external incoherency: from (2), every object external to the cluster, i.e., every object inV \ σ(x),
has an average similarity which does not exceed the cluster’s overall average similarity.
There may still be cases where the average similarity of an external object is the same as
that of an internal object, mining the cluster’s external incoherency. However, sincex is
an ESS, from (7) we see that whenever we try to extend a clusterwith small shares of
external objects, the cluster’s overall average similarity drops. This guarantees the external
incoherency property of a cluster to be also satisfied.

Finally, it is worth noting that this theory generalizes thedominant-sets clustering framework which
has recently been introduced in [14]. Indeed, ESSs of pairwise clustering games, i.e. clustering
games defined on graphs, correspond to the dominant-set clusters [20, 17]. This is an additional
evidence that ESSs are meaningful notions of cluster.

4 Evolution towards a cluster
In this section we will show that the ESSs of a clustering gameare in one-to-one correspondence
with (strict) local solution of a non-linear optimization program. In order to find ESSs, we will also
provide a dynamics due to Baum and Eagon, which generalizes the replicator dynamics [22].

Let H = (V, E, s) be a hypergraph clustering problem andΓ = (P, V, π) be the corresponding
clustering game. Consider the following non-linear optimization problem:

maximize f(x) =
∑

e∈E

s(e)
∏

i∈e

xi , subject to x ∈ ∆ . (9)
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It is simple to see that any first-order Karush-Kuhn-Tucker (KKT) point x ∈ ∆ of program (9) [13]
is a Nash equilibrium ofΓ. Indeed, by the KKT conditions there existµi ≥ 0, i ∈ S, andλ ∈ R

such that for alli ∈ S,

∇f(x)i + µi − λ =
1

k
u(ei,xk−1) + µi − λ = 0 and µixi = 0 ,

where∇ is the gradient operator. From this it follows straightforwardly thatu(ei,xk−1) ≤ u(xk)
for all i ∈ S. Moreover, it turns out that any strict local maximizerx ∈ ∆ of (9) is an ESS ofΓ.
Indeed, by definition, a strict local maximizer of this program satisfiesu(zk) = f(z) < f(x) =
u(xk), for anyz ∈ ∆ \ {x} close enough tox, which is in turn equivalent to (7) for sufficiently
small values ofǫ.

The problem of extracting ESSs of our hypergraph clusteringgame can thus be cast into the problem
of finding strict local solutions of (9). We will address thisoptimization task using a result due to
Baum and Eagon [3], who introduced a class of nonlinear transformations in probability domain.

Theorem 1 (Baum-Eagon). Let P (x) be a homogeneous polynomial in the variablesxi with non-
negative coefficients, and letx ∈ ∆. Define the mappingz = M(x) as follows:

zi = xi∂iP (x)
/

n
∑

j=1

xj∂jP (x), i = 1, . . . , n. (10)

ThenP (M(x)) > P (x), unlessM(x) = x. In other wordsM is a growth transformation for the
polynomialP .

The Baum-Eagon inequality provides an effective iterativemeans for maximizing polynomial func-
tions in probability domains, and in fact it has served as thebasis for various statistical estimation
techniques developed within the theory of probabilistic functions of Markov chains [4]. It was also
employed for the solution of relaxation labelling processes [15].

Sincef(x) is a homogeneous polynomial in the variablesxi, we can use the transformation of
Theorem 1 in order to find a local solutionx ∈ ∆ of (9), which in turn provides us with an ESS of the
hypergraph clustering game. By taking the support ofx, we have a cluster under our framework. The
complexity of finding a cluster is thusO(ρ|E|), where|E| is the number of edges of the hypergraph
describing the clustering problem andρ is the average number of iteration needed to converge. Note
thatρ never exceeded100 in our experiments.

In order to obtain the clustering, in principle, we have to find the ESSs of the clustering game.
This is a non-trivial, although still feasible, task [21], which we leave as a future extension of this
work. By now, we adopt a naivepeeling-off strategyfor our cluster extraction procedure. Namely,
we iteratively find a cluster and remove it from the set of objects, and we repeat this process on
the remaining objects until a desired number of clusters have been extracted. The set of extracted
ESSs with this procedure does not technically correspond tothe ESSs of the original game, but to
ESSs of sub-games of it. The cost of this approximation is that we unfortunately loose (by now) the
possibility of having overlapping clusters.

5 Experiments

In this section we present two types of experiments. The firstone addresses the problem of line
clustering, while the second one addresses the problem of illuminant-invariant face clustering. We
tested our approach against Clique Averaging algorithm (CAVERAGE), since it was the best per-
forming approach in [2] on the same type of experiments. Specifically, CAVERAGE outperformed
Clique Expansion [10] combined with Normalized cuts, Gibson’s Algorithm under sum and product
model [9], kHMeTiS [11] and Cascading RANSAC [2]. We also compare against Super-symmetric
Non-negative Tensor Factorization (SNTF) [18], because it is the only approach, other than ours,
which does not approximate the hypergraph to a graph.

Since both CAVERAGE and SNTF, as opposed to our method, require the number of classesK to be
specified, we run them with values ofK ∈ {K∗ − 1, K∗, K∗ + 1} among which the optimal one
(K∗) is present. This allows us to verify the robustness of the approaches under wrong values ofK,
which may occur in general as the optimal number of clusters is not known in advance.
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Figure 1: Results on clustering3, 4 and5 lines perturbed with increasing levels of Gaussian noise
(σ = 0, 0.01, 0.02, 0.04, 0.08).

We executed the experiments on a AMD Sempron 3Ghz computer with 1Gb RAM. Moreover, we
evaluated the quality of a clustering by computing the average F-measure of each cluster in the
ground-truth with the most compatible one in the obtained solution (according to a one-to-one cor-
respondence).

5.1 Line clustering

We consider the problem of clustering lines in spaces of dimension greater than two, i.e., given a
set of points inRd, the task is to find sets of collinear points. Pairwise measures of similarity are
useless and at least three points are needed. The dissimilarity measure on triplets of points is given
by their mean distance to the best fitting line. Ifd(i, j, k) is the dissimilarity of points{i, j, k}, the
similarity function is given bys({i, j, k}) = exp(−d(i, j, k)2/σ2), whereσ is a scaling parameter,
which has been optimally selected for all the approaches according to a small test set.

We conducted two experiments, in order to assess the robustness of the approaches to both local
and global noise. Local noise refers to a Gaussian perturbation applied to the points of a line, while
global noise consists of random outlier points.

A first experiment consists in clustering3, 4 and 5 lines generated in the5-dimensional space
[−2, 2]5. Each line consists of20 points, which have been perturbed according to 5 increasing
levels of Gaussian noise, namelyσ = 0, 0.01, 0.02, 0.04, 0.08. With this setting there are no outliers
and every point should be assigned to a line (e.g., see Figure1(a)). Figure 1(b) shows the results
obtained with three lines. We reported, for each noise level, the mean and the standard deviation
of the average F-measures obtained by the algorithms on 30 randomly generated instances. Note
that, if the optimalK is used, CAVERAGE and SNTF perform well and the influence of local noise
is minimal. This behavior intuitively makes sense under moderate perturbations, because if the ap-
proaches correctly partitioned the data without noise, it is unlikely that the result will change by
slightly perturbing them. Our approach however achieves good performances as well, although we
can notice that with the highest noise level, the performance slightly drops. This is due to the fact
that points deviating too much from the overall cluster average collinearity will be excluded as they
undermine the cluster’s internal coherency. Hence, some perturbed points will be considered out-
liers. Nevertheless, it is worth noting that by underestimating the optimal number of classes both
CAVERAGE and SNTF exhibit a drastic performance drop, whereas the influence ofoverestimations
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Figure 2: Results on clustering2, 3 and4 lines with an increasing number of outliers (0, 10, 20, 40).

has a lower impact on the two partition-based algorithms. Byincreasing the number of lines involved
in the experiment from three to four (Figure 1(c)) and to five (Figure 1(d)) the scenario remains al-
most the same for our approach and SNTF, while we can notice a slight decrease of CAVERAGE’s
performance.

The second experiment consists in clustering2, 3 and4 slightly perturbed lines (with fixed local
noiseσ = 0.01) generated in the5-dimensional space[−2, 2]5. Again, each line consists of20
points. This time however we added also global noise, i.e.,0, 10, 20 and40 random points as outliers
(e.g., see Figure 2(a)). Figure 2(b) shows the results obtained with two lines. Here, the supremacy
of our approach over partition-based ones is clear. Indeed,our method is not influenced by outliers
and therefore it performs almost perfectly, whereas CAVERAGE and SNTF perform well only without
outliers and with the optimalK. It is interesting to notice that, as outliers are introduced, CAVERAGE
and SNTF perform better withK > 2. Indeed, the only way to get rid of outliers is to group them in
additional clusters. However, since outliers are not mutually similar and intuitively they do not form
a cluster, we have that the performance of CAVERAGE and SNTF drop drastically as the number of
outliers increases. Finally, by increasing the number of lines from two to three (Figure 2(c)) and
to four (Figure 2(d)), the performance of CAVERAGE and SNTF get worse, while our approach still
achieves good results.

5.2 Illuminant-invariant face clustering

In [5] it has been shown that images of a Lambertian object illuminated by a point light source lie in
a three dimensional subspace. According to this result, if we assume that four images of a face form
the columns of a matrix thend = s2

4/(s2
1 + · · · + s2

4) provides us with a measure of dissimilarity,
wheresi is theith singular value of this matrix [2]. We use this dissimilarity measure for the face
clustering problem and we consider as dataset the Yale Face Database B and its extended version
[8, 12]. In total we have faces of 38 individuals, each under 64 different illumination conditions. We
compared our approach against CAVERAGE and SNTF on subsets of this face dataset. Specifically,
we considered cases where we have faces from 4 and 5 random individuals (10 faces per individual),
and with and without outliers. The case with outliers consists in 10 additional faces each from a
different individual. For each of those combinations, we created 10 random subsets. Similarly to the
case of line clustering, we run CAVERAGE and SNTF with values ofK ∈ {K∗ − 1, K∗, K∗ + 1},
whereK∗ is the optimal one.
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n. of classes: 4 5
n. of outliers: 0 10 0 10

CAVERAGE K=3 0.63±0.11 0.59±0.07 - -
CAVERAGE K=4 0.96±0.06 0.84±0.07 0.56±0.14 0.58±0.07
CAVERAGE K=5 0.91±0.06 0.79±0.05 0.85±0.12 0.83±0.06
CAVERAGE K=6 - - 0.84±0.09 0.82±0.06

SNTF K=3 0.62±0.12 0.58±0.10 - -
SNTF K=4 0.87±0.07 0.81±0.08 0.61±0.13 0.59±0.09
SNTF K=5 0.82±0.09 0.76±0.09 0.86±0.12 0.80±0.07
SNTF K=6 - - 0.85±0.08 0.79±0.11

HoCluGame 0.95±0.03 0.94±0.02 0.95±0.05 0.94±0.02

Table 1: Experiments on illuminant-invariant face clustering.

In Table 1 we report the average F-measures (mean and standard deviation) obtained by the three
approaches. The results are consistent with those obtainedin the case of line clustering with the
exception of SNTF, which performs worse than the other approaches on this real-world application.
CAVERAGE and our algorithm perform comparably well when clustering 4individuals without out-
liers. However, our approach turns out to be more robust in every other tested case, i.e., when the
number of classes increases and when outliers are introduced. Indeed, CAVERAGE’s performance
decreases, while our approach yields the same good results.

In both the experiments of line and face clustering the execution times of our approach were higher
than those of CAVERAGE, but considerably lower than SNTF. The main reason why CAVERAGE
run faster is that our approach and SNTF work directly on the hypergraph without resorting to pair-
wise relations, which is indeed what CAVERAGE does. Further, we mention that our code was not
optimized to improve speed and all the approaches were run without any sampling policy.

6 Discussion

In this paper, we offered a game-theoretic perspective to the hypergraph clustering problem. Within
our framework the clustering problem is viewed as a multi-player non-cooperative game, and clas-
sical equilibrium notions from evolutionary game theory turn out to provide a natural formalization
of the notion of a cluster. We showed that the problem of finding these equilibria (clusters) is equiv-
alent to solving a polynomial optimization problem with linear constraints, which we solve using an
algorithm based on the Baum-Eagon inequality. An advantageof our approach over traditional tech-
niques is the independence from the number of clusters, which is indeed an intrinsic characteristic
of the input data, and the robustness against outliers, which is especially useful when solving figure-
ground-like grouping problems. We also mention, as a potential positive feature of the proposed
approach, the possibility of finding overlapping clusters (e.g., along the lines presented in [21]), al-
though in this paper we have not explicitly dealt with this problem. The experimental results show
the superiority of our approach with respect to the state of the art in terms of quality of solution. We
are currently studying alternatives to the plain Baum-Eagon dynamics in order to improve efficiency.
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